
Strings
David Greenstein


Monta Vista High School



String Class
• An object in the String class represents a string of 

characters (char’s).


• The String class is in the java.lang package which is 
loaded automatically by the compiler.


• The String class has constructors just like most other 
classes.

  String str = new String(“Hello”);



String Class (cont)
The String class is unlike other classes because:


1. the String class has two operators, + and +=


2. the String class has literal objects denoted by “”

  String str = new String(“Hello”); 
  str = str + new String(“ and “); 
  str += “goodbye”;



Literal String
• Literal strings are anonymous constant objects of the 

String class that are defined as text in double quotes.


• You can use a literal string to call String methods.


• Literal strings don’t have to be constructed by your 
program; they are constructed and available before your 
code starts executing.

 char a = “Hello”.charAt(1);          // ‘e’ 
 String s = “Goodbye”.substring(1,3); // “oo”

“Hello” “Hello”
Code Object



Literal Strings (cont)

 String s1 = “Hello”; 
 String s2 = “Hello”;

 String s1 = “Hello”; 
 String s2 = new String(“Hello”);

Refer to the

same object

s1

s2

Literal

String 
object
“Hello”

s2
String 
object

“Hello”

s1

Literal

String 
object

“Hello”

“Hello” “Hello”

• All similar literal strings point to the same anonymous 
String object.


• new String creates a brand new object.



Comparing Literal Strings

 String s1 = “Hello”, s2 = “Hello”; 
 boolean p = (s1 == “Hello”); // true 
 boolean q = (s1 == s2);      // true

 String s1 = “Hello”; 
 String s2 = new String(“Hello”); 
 boolean p = (s1 == “Hello”); // true 
 boolean q = (s1 == s2);      // false 
 boolean r = (s2 == “Hello”); // false

• Identifiers assigned to the same literal Strings get the 
same pointer, so == produces true.

• new String creates a new object, so == with a literal 
produces false even if the string of characters match.

Remember: == is comparing object references,  
not the string itself.



Escape Characters
The string text may include “escape” characters. For 
example:


• \\ stands for \


• \n stands for newline


• \t stands for tab


• \” stands for ”

String s1 = “\tBiology”; 
String s2 =  "C:\\jdk1.4\\docs"; 
String s3 = “\”Hello\” \n”;



Immutability
• Immutable objects cannot be changed.


• Immutable objects are convenient because several 
references can point to the same object safely.


• The java.lang package has a number of immutable 
classes: String, Integer, Double, Boolean, etc.

 String s1 = “Hello” 
 String s2 = s1; 
 s1 = s1.toUpperCase(); // s2 does not change!



 String s1 = “Monta”; 
 String s2 = s1;             // same reference 
 String s3 = new String(s1); // new object 
 String s4 = s1.substring(2); // new object 
 String s5 = s1.toUpperCase(); // new object

s1

s2

“Monta”

• String methods that modify the string create new 
objects

Immutability (cont)

s3

s4

“Monta”

“nta”

s5 “MONTA”

 s1.substring(2); // Does not change s1!!!



Immutability (cont)
• Advantage: no need to copy — more efficient.


• Disadvantage: you need to create a new string 
and throw away the old one for every small change 
— less efficient.

 String s1 = new String(“matador”); 
 s1 = Character.toUpperCases(s1.charAt(0)) + 
              s1.substring(1);

s1 “matador”

“Matador”



Empty String

 String s1 = new String(“”); 
 String s2 = new String();

 String msg;           // local variable 
 int x = msg.length(); // NullObject syntax error!

• An empty string has no characters; its length is 0.


• Two different ways to construct an empty string 
object.

• Do not confuse an empty string object with an 
uninitialized string.



Methods - length, charAt

 “Principal”.length() returns 9 
 “Cupertino”.charAt(5) returns ’t'

• int length() - returns the number of characters in 
the string


• char charAt(int k) - returns the character at 
index k inside the string



Method - substring

 String s1 = “halloween”.substring(5);

• substring returns a new String object

Returns a new string object starting with the character at index 5.
“ween”

 String s1 = “costume”.substring(2,5);
Returns a new string object starting with the character at index 2

up to but not including the character at index 5.

“stu”



Method - substring (cont)
• An index one greater than the last index of the string 

allows the substring to capture the end of the string.
 “ghost”.substring(3,5); “st”

 “ghost”.substring(6) // Index Out of Bounds

• The substring can also create the empty string 
 “ghost”.substring(5); 
 “ghost”.substring(1,1);

“”
“”

• substring cannot accept an index out of bounds 



Method - Concatenation
String answer = s1 + s2;

Concatenates the strings s1 and s2.

String answer = s1.concat(s2);

Same as s1 + s2

s1 += s2;

Same as s1 + s2 with the result assigned to s1



Method - indexOf

String date = “October 17, 2017 10:11:20 AM”;

date.indexOf(‘r’)

Returns

0

6

date.indexOf(‘7’) 9

6 9

date.indexOf(“17”) 8
date.indexOf(“17”, 10) 14

14

date.indexOf(“2020”) -1

23

Searches from index 10

Not found

date.lastIndexOf(‘7’) 15

Index

Searches backward

from end



Methods - Comparisons

 boolean b = s1.equals(s2);

• Most String comparisons should be done with equals() and 
compareTo()

Returns true if the string s1 is equal to s2 character-for-character

 boolean b = s1.equalsIgnoreCase(s2);

Same result as equals() but is case-blind

 int diff = s1.compareTo(s2);

Returns the lexicographical “difference” s1 - s2

 int diff = s1.compareToIgnoreCase(s2);

Returns the lexicographical “difference” s1 - s2 but case-blind



Methods - Replacements
 String s2 = s1.trim();

• String replacement methods return a new String object

Returns a new String object with whitespace characters removed

from both ends of the string. Embedded whitespace is untouched.

 String s2 = s1.replace(oldChar, newChar);

Returns a new String object in which every occurrence of oldChar

is replaced by newChar

 String s2 = s1.toUpperCase(); 
 String s3 = s1.toLowerCase();

Returns a new String object that has all uppercase or lowercase

characters of the original string

 s1.toUpperCase() // Does not change s1!!!



Numbers to Strings

 String s = “” + number;

• There are four ways to convert a number into a string.

1. Concatenate a number with an empty string.

 String s1 = Integer.toString(intNum); 
 String s2 = Double.toString(dblNum);

2. Use the wrapper class of the number to convert to string.

    Integer and Double are the “wrapper” classes from java.lang.

 String s = String.valueOf(num);
3. Use the String class valueOf() method.



Numbers to Strings

 int month = 12, day = 5, year = 2017; 
 double amount = 32.04; 
 String s = 
        String.format(“%02d-%02d-%4d $%6.2f\n”, 
                     month, day, year, amount);

• There are four ways to convert a number into a string.

4. Use the String class’ format() method.

s = “12-05-2017 $ 32.04”

• Numbers are also converted in a similar way when using 
printf().
 System.out.printf(“%02d-%02d-%4d $%6.2f\n”, 
                     month, day, year, amount);



Strings to Numbers
 String s1 = "-123", s2 = "123.45"; 
 int n = Integer.parseInt(s1); 
 double x = Double.parseDouble(s2);

• Numeric “wrapper” classes in java.lang have 
parseXXX() method to convert a String to a number.


Wrapper classes: Byte, Short, Integer, Long, Double, Float 

• These methods throw a NumberFormatException if 
the string does not represent a valid number. Use try-
catch when converting.



Character Methods
• java.lang.Character is a “wrapper” class that 

represents characters as objects.


• Character has several useful static methods that 
determine the type of a character.


isLetter(char c) 
isDigit(char c) 
isLetterOrDigit(char c) 

• Character also has methods that convert a letter to 
uppercase, lowercase, or to a String.


toLowerCase(char c) 
toUpperCase(char c) 
toString(char c)          returns a String

isUpperCase(char c) 
isLowerCase(char c) 
isWhitespace(char c)



StringBuffer and StringBuilder
• StringBuffer and StringBuilder classes are mutable versions 

of the String class.

Changes to the string affect the original object.

Advantage: More efficient in memory allocation.

Disadvantage: Changes affect all references to the string.


• StringBuffer and String are thread-safe classes.

Threads are asynchronous programs that run concurrently.  
(eg. Timers, GUIs)

If two or more threads try to change the same object, only one gets to 
change it. (thread-safe)


• StringBuilder is not thread-safe.

If two or more threads try to change the same object, then unexpected 
(meaning bad) things could happen to the object.

 StringBuffer and StringBuilder are not used in this course.



Questions?


